microscopy and neuroscience

  1. Dynamic super-resolution structured illumination imaging in the living brain.
    Turcotte R, Liang Y, Tanimoto M, Zhang Q, Li Z, Koyama M, Betzig E, Ji N
    Proceedings of the National Academy of Sciences of the United States of America (2019) 116, 9586-9591. doi:10.1073/pnas.1819965116

  2. Kilohertz in vivo imaging of neural activity.
    Wu J, Liang Y, Hsu C-L, Chavarha M, Evans S, Shi D, Lin M, Tsia K, Ji N
    bioRxiv (2019) 543058. doi:10.1101/543058

  3. High-throughput synapse-resolving two-photon fluorescence microendoscopy for deep-brain volumetric imaging in vivo.
    Meng G, Liang Y, Sarsfield S, Jiang WC, Lu R, Dudman JT, Aponte Y, Ji N
    Elife (2019) e40805. doi: 10.7554/eLife.40805

  4. Optical alignment device for two-photon microscopy.
    Galiñanes GL, Marchand PJ, Turcotte R, Pellat S, Ji N, Huber D
    Biomedical Optics Express (2018) 9, 3624-3639. doi: 10.1364/BOE.9.003624

  5. In vivo measurement of afferent activity with axon-specific calcium imaging.
    Broussard G, Liang Y, Fridman M, Unger E, Meng G, Xiao X, Ji N, Petreanu L, Tian L
    Nature Neuroscience (2018) 21, 1272-1280. doi: 10.1038/s41593-018-0211-4

  6. 50 Hz volumetric functional imaging with continuously adjustable depth of focus.
    Lu R, Taminoto M, Koyama M, Ji N
    Biomedical Optics Express (2018) 9, 1964-1976. doi: 10.1364/BOE.9.001964 bioRxiv (2017) doi: 10.1101/240069

  7. Adaptive optical microscopy for neurobiology.
    Rodriguez C, Ji N
    Current Opinion in Neurobiology (2018) 6, 83-91. doi: 10.1016/j.conb.2018.01.011

  8. Three-photon fluorescence microscopy with an axially elongated Bessel focus.
    Rodriguez C, Liang Y, Lu R, Ji N
    Optics Letters (2018) 43, 1914-1917. doi: 10.1364/OL.43.001914 bioRxiv (2017) doi: 10.1101/240960

  9. A general method to fine-tune fluorophores for live-cell and in vivo imaging.
    Grimm JB, Muthusamy AK, Liang Y, Brown TA, Lemon WC, Patel R, Lu R, Macklin JJ, Keller PJ, Ji N, Lavis LD
    Nature Methods (2017) 14, 987-994. doi: 10.1038/nmeth.4403

  10. Adaptive optical versus spherical aberration corrections for in vivo brain imaging.
    Turcotte R, Liang Y, Ji N
    Biomedical Optics Express (2017) 8, 3891-3902. doi: 10.1364/BOE.8.003891

  11. Near-infrared fluorescent protein iRFP713 as a reporter protein for optogenetic vectors, a transgenic Cre-reporter rat, and other neuronal studies.
    Richie CT, Whitaker LR, Whitaker KW, Necarsulmer J, Baldwin HA, Zhang Y, Fortuno L, Hinkle JJ, Koivula P, Henderson MJ, Sun W, Wang K, Smith JC, Pickel J, Ji N, Hope BT, Harvey BK
    Journal of Neuroscience Methods (2017) 284, 1-14. doi: 10.1016/j.jneumeth.2017.03.020

  12. Adaptive optical fluorescence microscopy.
    Ji N
    Nature Methods (2017) 14, 374-380. doi:10.1038/nmeth.4218

  13. Video-rate volumetric functional imaging of the brain at synaptic resolution.
    Lu R, Sun W, Liang Y, Kerlin A, Bierfeld J, Seelig J, Wilson DE, Scholl B, Mohar B, Tanimoto M, Koyama M, Fitzpatrick D, Orger MB, Ji N
    Nature Neuroscience (2017) 20, 620-628. doi:10.1038/nn.4516 http://biorxiv.org/content/biorxiv/early/2016/06/12/058495.full.pdf

  14. Opportunities for Technology and Tool Development.
    Neuron (2016) 92, 564-566. (Voices) doi: 10.1016/j.neuron.2016.10.042

  15. Technologies for imaging neural activity in large volumes.
    Ji N, Freeman J, Smith SL
    Nature Neuroscience (2016) 19, 1154-64. doi: 10.1038/nn.4358

  16. Thalamus provides layer 4 of primary visual cortex with orientation- and direction-tuned inputs.
    Sun W, Tan Z, Mensh BD, Ji N
    Nature Neuroscience (2016) 19, 308–315. doi: 10.1038/nn.4196

  17. Minimally invasive microendoscopy system for in vivo functional imaging of deep nuclei in the mouse brain.
    Bocarsly ME, Jiang W, Wang C, Dudman JT, Ji N, Aponte Y
    Biomedical Optics Express (2015) 6, 4546-56. doi: 10.1364/BOE.6.004546

  18. Neuronal Representation of Ultraviolet Visual Stimuli in Mouse Primary Visual Cortex.
    Tan Z, Sun W, Chen T, Kim D, Ji N
    Scientific Reports (2015) 5, 12597. doi: 10.1038/srep12597

  19. Direct wavefront sensing for high-resolution in vivo imaging in scattering tissue.
    Wang K, Sun W, Richie CT, Harvey BK, Betzig E, Ji N
    Nature Communications (2015) 6, 7276. doi: 10.1038/ncomms8276

  20. Label-free spectroscopic detection of membrane potential using stimulated Raman scattering.
    Liu B, Lee HJ, Zhang D, Liao C, Ji N, Xia Y, Cheng J
    Applied Physics Letters (2015) 106, 173704. doi: 10.1063/1.4919104

  21. The Practical and Fundamental Limits of Optical Imaging in Mammalian Brains.
    Ji N
    Neuron (2014) 83, 1242-1245. doi: 10.1016/j.neuron.2014.08.009

  22. Multiplexed aberration measurement for deep tissue imaging in vivo.
    Wang C, Liu R, Milkie DE, Sun W, Tan Z, Kerlin A, Chen T, Kim DS, Ji N
    Nature Methods (2014) 11, 1037–1040. doi: 10.1038/nmeth.3068

  23. Direct phase measurement in zonal wavefront reconstruction using multidither coherent optical adaptive technique.
    Liu R, Milkie DE, Kerlin A, Maclennan B, Ji N
    Optics Express (2014) 22, 1619-1628. doi: 10.1364/OE.22.001619

  24. Characterization and improvement of three-dimensional imaging performance of GRIN-lens-based two-photon fluorescence endomicroscopes with adaptive optics.
    Wang C, Ji N
    Optics Express (2013) 21, 27142-54. doi: 10.1364/OE.21.027142

  25. Pupil-segmentation-based adaptive optical correction of a high-numerical-aperture gradient refractive index lens for two-photon fluorescence endoscopy.
    Wang C, Ji N
    Optics Letters (2012) 37, 2001-3. doi: 10.1364/OL.37.002001

  26. Characterization and adaptive optical correction of aberrations during in vivo imaging in the mouse cortex.
    Ji N, Sato TR, Betzig E
    Proceedings of the National Academy of Sciences of the United States of America (2012) 109, 22-7. doi: 10.1073/pnas.1109202108

  27. Pupil-segmentation-based adaptive optical microscopy with full-pupil illumination.
    Milkie DE, Betzig E, Ji N
    Optics Letters (2011) 36, 4206-8. doi: 10.1364/OL.36.004206

  28. Adaptive optics via pupil segmentation for high-resolution imaging in biological tissues.
    Ji N, Milkie DE, Betzig E
    Nature Methods (2010) 7, 141-7. doi: 10.1038/nmeth.1411

  29. Advances in the speed and resolution of light microscopy.
    Ji N, Shroff H, Zhong H, Betzig E
    Current Opinion in Neurobiology (2008) 18, 605-16. doi: 10.1016/j.conb.2009.03.009

  30. High-speed, low-photodamage nonlinear imaging using passive pulse splitters.
    Ji N, Magee JC, Betzig E
    Nature Methods (2008) 5, 197-202. doi: 10.1038/nmeth.1175

chemical physics & nonlinear optics

  1. Interfacial Structures of Acidic and Basic Aqueous Solutions.
    Tian C, Ji N, Waychunas GA, Shen YR
    Journal of the American Chemical Society (2008) 130, 13033-13039.

  2. Characterization of vibrational resonances of water-vapor interfaces by phase-sensitive sum-frequency spectroscopy.
    Ji N, Ostroverkhov V, Tian CS, Shen YR
    Physical Review Letters (2008) 096102.

  3. Phase-sensitive sum-frequency vibrational spectroscopy and its application to studies of interfacial alkyl chains.
    Ji N, Ostroverkhov V, Chen CY, Shen YR
    Journal of the American Chemical Society (2007) 129, 10056-10057.

  4. Atomic and molecular parity nonconservation and sum frequency generation solutions to the Ozma problem.
    Ji N, Harris RA
    Journal of Physical Chemistry B (2006) 110, 18744-18747.

  5. Towards chiral sum frequency spectroscopy.
    Ji N, Ostroverkhov V, Belkin MA, Shiu YJ, Shen YR
    Journal of the American Chemical Society (2006) 128, 8845-8848.

  6. Three-dimensional chiral imaging by sum frequency generation.
    Ji N, Zhang K, Yang H, Shen YR
    Journal of the American Chemical Society (2006) 128, 3482-3483.

  7. A novel spectroscopic probe for molecular chirality.
    Ji N, Shen YR
    Chirality (2006) 18, 146-158.

  8. A dynamic coupling model for sum frequency chiral response from liquids composed of molecules with a chiral side chain and an achiral chromophore.
    Ji N, Shen YR
    Journal of the American Chemical Society (2005) 127, 12933-12942.

  9. Optically active sum frequency generation from molecules with a chiral center - amino acids as model systems.
    Ji N, Shen YR
    Journal of the American Chemical Society (2004) 126, 15008-15009.

  10. Sum frequency vibrational spectroscopy of leucine molecules adsorbed at air-water interface.
    Ji N, Shen YR
    Journal of Chemical Physics (2004) 120, 7107-7112.

  11. Surface vibrational spectroscopy on shear-aligned poly(tetrafluoroethylene) films.
    Ji N, Ostroverkhov V, Lagugne-Labarthet F, Shen YR
    Journal of the American Chemical Society (2003) 125, 14218-14219.

  12. Sum-frequency vibrational spectroscopic study of surface glass transition of poly(vinyl alcohol).
    Zhang C, Hong SC, Ji N, Wang YP, Wei KH, Shen YR
    Macromolecules (2003) 36, 3303-3306.

  13. Intense laser induced eld ionization of C2H2, C2H4, and C2H6.
    Gao L, Ji N, Xiong YJ, Tang XP, Kong F
    Chinese Science Bulletin (2003) 48, 1713.

  14. Sum-frequency spectroscopy of electronic resonances on a chiral surface monolayer of bi-naphthol.
    Han SH, Ji N, Belkin MA, Shen YR
    Physical Review B (2002) 66, 165415.

  15. Field ionization of aliphatic ketones by intense femtosecond laser.
    Wu CY, Xiong YJ, Ji N, He Y, Gao Z, Kong F
    Journal of Physical Chemistry A (2001) 105, 374.