microscopy and neuroscience

2025

  1. Stimulation with ECoG electrodes modulates cortical activity and sensory processing in the awake mouse brain.

    Fan JL, Lee K, Tchoe Y, Ganji M, Vatsyayan R, Yoon HY, Garrett J, Dayeh SA, Halgren E, Ji N

    bioRxiv (2025) 2025.10.28.685211 https://doi.org/10.1101/2025.10.28.685211

  2. Label-free structural imaging of plant roots and microbes using third-harmonic generation microscopy.

    Pan D, Rivera JA, Miao M, Kim P, Tyml T, Rodriguez C, Afifa U, Wang B, Yoshikuni Y, Elisabeth NH, Northen TR, Vogel JP, Ji N

    Scientific Reports (2025)15, 36186. https://doi.org/10.1038/s41598-025-20030-9

    Also see: bioRxiv (2024) https://doi.org/10.1101/2024.04.13.589377

  3. Parallel frequency-multiplexed aberration measurement for widefield fluorescence microscopy.

    Kim H, Kang I, Natan R, Ji N

    bioRxiv (2025) 2025.10.11.681535 https://doi.org/10.1101/2025.10.11.681535

  4. Structure and function of lens suture examined by 2-photon fluorescence microscopic imaging.

    Zhang Q, Zhu J, Painter T, Xia CH, Ji N, Gong X

    bioRxiv (2025) 2025.09.08.675023 https://doi.org/10.1101/2025.09.08.675023

  5. FACED 2.0 enables large-scale voltage and calcium imaging in vivo.

    Zhong J, Natan RG, Zhang Q, Wong JSJ, Miehl C, Bose K, Lu X, St-Pierre F, Guo S, Doiron B, Tsia KK, Ji N

    Nature Methods in press.

    bioRxiv (2025) 2025.03.06.641784; doi: https://doi.org/10.1101/2025.03.06.641784

  6. Suite3D: Volumetric cell detection for two-photon microscopy

    Haydaroğlu A, Chang T, Landau A, Krumin M, Dodgson S, Baruchin LJ, Cozan M, Guo J, Meyer D, Reddy CB, Zhong J, Ji N, Schröder S, Harris KD, Vaziri A, Carandini M

    bioRxiv (2025) 2025.03.26.645628 https://doi.org/10.1101/2025.03.26.645628

  7. Circuit-based understanding of fine spatial scale clustering of orientation tuning in mouse visual cortex.

    Yu P, Yang Y, Gozel O, Oldenburg I, Dipoppa M, Rossi LF, Miller K, Adesnik H, Ji N, Doiron B

    bioRxiv (2025) 2025.02.11.637768; doi: https://doi.org/10.1101/2025.02.11.637768

  8. Modal focal adaptive optics for bessel-focus two-photon fluorescence microscopy.

    Kim H, Natan RG, Chen W, Winans AM, Fan JL, Isacoff E, and Ji N

    Optics Express (2025) 33, 680–93. https://doi.org/10.1364/OE.541033

  9. Multiphoton and Harmonic Imaging of Microarchitected Materials.

    Blankenship BW, Pan D, Kyriakou E, Zyla G, Meier T, Arvin S, Seymour N, De La Torre N, Farsari M, Ji N, Grigoropoulos CP

    ACS Appl Mater Interfaces (2025) 17, 3887-3896. https://doi.org/10.1021/acsami.4c16509

    2024

  10. Adaptive optical correction for in vivo two-photon fluorescence microscopy with neural fields.

    Kang I, Kim H, Natan R, Zhang Q, Yu SX, Ji N

    bioRxiv (2024) 2024.10.20.619284. https://www.biorxiv.org/content/10.1101/2024.10.20.619284v1

  11. A fast and responsive voltage indicator with enhanced sensitivity for unitary synaptic events.

    Hao YA, Lee S, Roth RH, Natale S, Gomez L, Taxidis J, O'Neill PS, Villette V, Bradley J, Wang Z, Jiang D, Zhang G, Sheng M, Lu D, Boyden E, Delvendahl I, Golshani P, Wernig M, Feldman DE, Ji N, Ding J, Südhof TC, Clandinin TR, Lin MZ

    Neuron (2024) 112, 3680-3696. https://doi.org/10.1016/j.neuron.2024.08.019

  12. Multiphoton fluorescence microscopy for in vivo imaging.

    Xu C, Nedergaard M, Fowell DJ, Friedl P, Ji N

    Cell (2024) 187, 4458-4487. Invited Review. https://doi.org/10.1016/j.cell.2024.07.036

  13. A dendritic mechanism for balancing synaptic flexibility and stability.

    Yaeger CE, Vardalaki D, Zhang Q, Pham TLD, Brown NJ, Ji N, Harnett MT

    Cell Reports (2024) 43, 114638. https://doi.org/10.1016/j.celrep.2024.114638

    Also see: bioRxiv 2022.02.02.478840; doi: https://doi.org/10.1101/2022.02.02.478840

  14. Frequency-multiplexed aberration measurement for confocal microscopy.

    Pan D, Ge X, Liu Y, Ferger L, Shcherbakova D, Isacoff E, Ji N

    Optics Express (2024) 32, 28655-28665. https://doi.org/10.1364/OE.525479

  15. Adaptive optical third-harmonic generation microscopy for in vivo imaging of tissues.

    Rodríguez C, Pan D, Natan R, Mohr M, Miao M, Chen X, Northen T, Vogel J, Ji N

    Biomedical Optics Express (2024) 15, 4513-4524. https://doi.org/10.1364/BOE.527357

    Also see: bioRxiv (2024) 2024.05.02.592275. https://doi.org/10.1101/2024.05.02.592275

  16. Improving positively tuned voltage indicators for brightness and kinetics.

    Lee S, Zhang G, Gomez LC, Hao YA, Jiang D, Roth RH, Testa-Silva G, Ding J, Clandinin T, Feldman D, Ji N, Lin MZ

    bioRxiv (2024) 2024.06.21.599617; doi: https://doi.org/10.1101/2024.06.21.599617

  17. Coordinate-based neural representations for computational adaptive optics in widefield microscopy.

    Kang I*, Zhang Q*, Yu SX, Ji N

    Nature Machine Intelligence (2024) 6, 714–725. https://doi.org/10.1038/s42256-024-00853-3

    Also see arXiv (2023) 2307.03812. https://doi.org/10.48550/arXiv.2307.03812

    *Contributed equally and co-correspondence authors

  18. High-throughput volumetric mapping of synaptic transmission.

    Chen W, Ge X, Zhang Q, Natan RG, Fan JL, Scanziani M, Ji N

    Nature Methods (2024) 21, 1298–1305. https://doi.org/10.1038/s41592-024-02309-3 (Link to a view-only version)

    Also see: bioRxiv (2022) 2022.03.05.483143 https://doi.org/10.1101/2022.03.05.483143

    2023

  19. Deep-brain optical recording of neural dynamics during behavior.

    Zhou ZC, Gordon-Fennell A, Piantadosi SC, Ji N, Smith SL, Bruchas MR, Stuber GD

    Neuron (2023) 111, 3716. https://doi.org/10.1016/j.neuron.2023.09.006

  20. maskNMF: A denoise-sparsen-detect approach for extracting neural signals from dense imaging data.

    Pasarkar A, Kinsella I, Zhou P, Wu M, Pan D, Fan JL, Wang Z, Abdeladim L, Peterka DS, Adesnik H, Ji N, Paninski L

    bioRxiv (2023) https://doi.org/10.1101/2023.09.14.557777

  21. Stimulus edges induce orientation tuning in superior colliculus.

    Liang Y*, Lu R*, Borges K, Ji N

    Nature Communications (2023) 14, 4756. https://doi.org/10.1038/s41467-023-40444-1 *Contributed equally

  22. A positively tuned voltage indicator for extended electrical recordings in the brain.

    Evans SW, Shi DQ, Chavarha M, Plitt MH, Taxidis J, Madruga B, Fan JL, Hwang FJ, van Keulen SC, Suomivuori CM, Pang MM, Su S, Lee S, Hao YA, Zhang G, Jiang D, Negrean A, Losonczy A, Makinson CD, Wang S, Clandini TR, Dror RO, Ding JB, Ji N, Golshani P, Giocomo LM, Bi GQ, Lin MZ

    Nature Methods (2023) 20, 1104–1113. https://doi.org/10.1038/s41592-023-01913-z

    Also see: bioRxiv (2021) 2021.10.21.465345 https://doi.org/10.1101/2021.10.21.465345

  23. Adaptive optical two-photon fluorescence microscopy probes cellular organization of ocular lenses in vivo.

    Paidi SK, Zhang Q, Yang Y, Xia CH, Ji N, Gong X

    Investigative Ophthalmology & Visual Science (2023) 64, 20. https://doi.org/10.1167/iovs.64.7.20

    Also see bioRxiv (2023) 524320; https://doi.org/10.1101/2023.01.17.524320

  24. The mitochondrial unfolded protein response regulates hippocampal neural stem cell aging.

    Wang CL, Ohkubo R, Mu WC, Chen W, Fan JL, Song Z, Maruichi A, Sudmant PH, Pisco AO, Dubal DB, Ji N, Chen D

    Cell Metabolism (2023) 23, 00139-0. https://doi.org/10.1016/j.cmet.2023.04.012

  25. Adaptive optics for optical microscopy.

    Zhang Q, Hu Q, Berlage C, Kner P, Judkewitz B, Booth M, Ji N

    Biomedical Optics Express (2023) 14, 1732-1756. Invited Review. https://doi.org/10.1364/BOE.479886

  26. Retinal microvascular and neuronal pathologies probed in vivo by adaptive optical two-photon fluorescence microscopy.

    Zhang Q, Yang Y, Cao KJ, Chen W, Paidi S, Xia CH, Kramer RH, Gong X, Ji N

    Elife (2023) 12, e84853. https://doi.org/10.7554/eLife.84853

    Also see: bioRxiv (2022) 2022.11.23.517628 https://doi.org/10.1101/2022.11.23.517628

  27. High-Speed Neural Imaging with Synaptic Resolution: Bessel Focus Scanning Two-Photon Microscopy and Optical-Sectioning Widefield Microscopy.

    Meng G, Zhang Q, Ji N

    Chapter 10. In: Papagiakoumou E, editor. All-Optical Methods to Study Neuronal Function. New York: Humana; (2023).

    2022

  28. Ultrafast two-photon fluorescence imaging of cerebral blood circulation in the mouse brain in vivo.

    Meng G, Zhong J, Zhang Q, Wong JSJ, Wu J, Tsia KK, Ji N.

    Proceedings of the National Academy of Sciences of the United States of America (2022) 119, e2117346119. https://doi.org/10.1073/pnas.2117346119

    Also see a great commentary by Bruno Weber and Franca Schmid on our paper!

  29. Neurophotonic tools for microscopic measurements and manipulation: status report.

    Abdelfattah AS, et al.

    Neurophotonics (2022) 9, 013001. https://doi.org/10.1117/1.NPh.9.S1.013001

  30. Roadmap on wavefront shaping and deep imaging in complex media.

    Gigan S, et al.

    Journal of Physics: Photonics (2022) 4, 042501. https://doi.org/10.1088/2515-7647/ac76f9

    2021

  31. Speed scaling in multiphoton fluorescence microscopy.

    Wu J, Ji N, Tsia KK

    Nature Photonics (2021) 15, 800–812. https://doi.org/10.1038/s41566-021-00881-0

  32. Adaptive optics for high-resolution imaging.

    Hampson KM, Turcotte R, Miller DT, Kurokawa K, Males JR, Ji N, Booth MJ

    Nature Review Methods Primers (2021) 1, 68. https://doi.org/10.1038/s43586-021-00066-7

  33. In vivo volumetric imaging of calcium and glutamate activity at synapses with high spatiotemporal resolution.

    Chen W, Natan RG, Yang Y, Chou SW, Zhang Q, Isacoff EY, Ji N

    Nature Communications (2021) 12, 6630. https://doi.org/10.1038/s41467-021-26965-7

  34. An adaptive optics module for deep tissue multiphoton imaging in vivo.

    Rodríguez C, Chen A, Rivera JA, Mohr MA, Liang Y, Natan RG, Sun W, Milkie DE, Bifano TG, Chen X, Ji N

    Nature Methods (2021)18, 1259-1264. https://doi.org/10.1038/s41592-021-01279-0

    Also see: bioRxiv (2020) 2020.11.25.397968 https://doi.org/10.1101/2020.11.25.397968

  35. High-speed laser-scanning biological microscopy using FACED.

    Lai QTK, Yip GGK, Wu J, Wong JSJ, Lo MCK, Lee KCM, Le TTHD, So HKH, Ji N, Tsai KK

    Nature Protocols (2021) 16, 4227–4264. https://doi.org/10.1038/s41596-021-00576-4

  36. One wavelength to excite them all: deep tissue imaging going multicolor.

    Rodríguez C, Ji N

    Trends in Neurosciences (2021) 44, 689-691. https://doi.org/10.1016/j.tins.2021.07.001

  37. A distinct population of L6 neurons in mouse V1 mediate cross-1 callosal communication.

    Liang Y, Fan JL, Sun W, Lu R, Chen M, Ji N

    Cerebral Cortex (2021) 31, 4259–4273. https://doi.org/10.1093/cercor/bhab084

    Also see: bioRxiv (2019) 778019; doi: https://doi.org/10.1101/778019

  38. Adaptive optics enables aberration-free single-objective remote focusing for two-photon fluorescence microscopy.

    Yang Y, Chen W, Fan JL, Ji N

    Biomedical Optics Express (2021) 12, 354-366. https://doi.org/10.1364/BOE.413049

  39. Bright near-infrared genetically encoded calcium indicator for in vivo imaging.

    Shemetov AA*, Monakhov MV*, Zhang Q, Canton-Josh JE, Kumar M, Chen M, Matlashov MM, Li X, Yang W, Nie L, Shcherbakova DM, Kozorovitskiy Y, Yao J, Ji N, Verkhusha VV

    Nature Biotechnology (2021) 39, 368–377. https://doi.org/10.1038/s41587-020-0710-1 (*Contributed equally)

    2020

  40. High-speed volumetric two-photon fluorescence imaging of neurovascular dynamics.

    Fan JL, Rivera JA, Sun W, Peterson J, Haeberle H, Rubin S, Ji N

    Nature Communications (2020) 11, 6020. https://doi.org/10.1038/s41467-020-19851-1

  41. High-resolution in vivo optical-sectioning widefield microendoscopy.

    Zhang Q, Pan D, Ji N

    Optica (2020) 7, 1287-1290. https://doi.org/10.1364/OPTICA.397788

  42. Practical sensorless aberration estimation for 3D microscopy with deep learning.

    Saha D, Schmidt U, Zhang Q, Barbotin A, Hu Q, Ji N, Booth M, Weigert M, Myers EW

    Optics Express (2020) 28, 29044-29053. https://doi.org/10.1364/OE.401933

  43. Fast widefield imaging of neuronal structure and function with optical sectioning in vivo.
    Li Z*, Zhang Q*, Chou S-W, Newman Z, Turcotte R, Natan R, Dai Q, Isacoff EY, Ji N

    Science Advances (2020) 6, eaaz3870. https://doi.org/10.1126/sciadv.aaz3870 (*Contributed equally)

  44. Kilohertz two-photon fluorescence microscopy imaging of neural activity in vivo.
    Wu J, Liang Y, Chen S, Hsu C-L, Chavarha M, Evans SW, Shi D, Lin MZ, Tsia KK, Ji N.

    Nature Methods (2020) 17, 287–290. https://doi.org/10.1038/s41592-020-0762-7

    Also see: bioRxiv (2019) 543058; doi: https://doi.org/10.1101/543058

  45. Rapid mesoscale volumetric imaging of neural activity with synaptic resolution.
    Lu R*, Liang Y*, Meng G*, Zhou P, Svoboda K, Paninski L, Ji N

    Nature Methods (2020) 17, 291–294. https://doi.org/10.1038/s41592-020-0760-9 (*Contributed equally)

    2019

  46. Dynamic super-resolution structured illumination imaging in the living brain.
    Turcotte R, Liang Y, Tanimoto M, Zhang Q, Li Z, Koyama M, Betzig E, Ji N
    Proceedings of the National Academy of Sciences of the United States of America (2019) 116, 9586-9591. doi:10.1073/pnas.1819965116

  47. High-throughput synapse-resolving two-photon fluorescence microendoscopy for deep-brain volumetric imaging in vivo.
    Meng G, Liang Y, Sarsfield S, Jiang WC, Lu R, Dudman JT, Aponte Y, Ji N
    Elife (2019) e40805. doi: 10.7554/eLife.40805

  48. Penalized matrix decomposition for denoising, compression, and improved demixing of functional imaging data.

    Buchanan EK et al.

    bioRxiv (2019) 334706 https://doi.org/10.1101/334706

    2018

  49. Optical alignment device for two-photon microscopy.
    Galiñanes GL, Marchand PJ, Turcotte R, Pellat S, Ji N, Huber D
    Biomedical Optics Express (2018) 9, 3624-3639. doi: 10.1364/BOE.9.003624

    Also see: bioRxiv (2018) 312207 https://doi.org/10.1101/312207

  50. In vivo measurement of afferent activity with axon-specific calcium imaging.
    Broussard G, Liang Y, Fridman M, Unger E, Meng G, Xiao X, Ji N, Petreanu L, Tian L
    Nature Neuroscience (2018) 21, 1272-1280. doi: 10.1038/s41593-018-0211-4

  51. 50 Hz volumetric functional imaging with continuously adjustable depth of focus.
    Lu R, Taminoto M, Koyama M, Ji N
    Biomedical Optics Express (2018) 9, 1964-1976. doi: 10.1364/BOE.9.001964

    Also see: bioRxiv (2017) 240069 https://doi.org/10.1101/240069

  52. Adaptive optical microscopy for neurobiology.
    Rodriguez C, Ji N
    Current Opinion in Neurobiology (2018) 6, 83-91. doi: 10.1016/j.conb.2018.01.011

  53. Three-photon fluorescence microscopy with an axially elongated Bessel focus.
    Rodriguez C, Liang Y, Lu R, Ji N
    Optics Letters (2018) 43, 1914-1917. doi: 10.1364/OL.43.001914

    Also see: bioRxiv (2018) 240960 https://doi.org/10.1101/240960

    2017

  54. A general method to fine-tune fluorophores for live-cell and in vivo imaging.
    Grimm JB, Muthusamy AK, Liang Y, Brown TA, Lemon WC, Patel R, Lu R, Macklin JJ, Keller PJ, Ji N, Lavis LD
    Nature Methods (2017) 14, 987-994. doi: 10.1038/nmeth.4403

    Also see: bioRxiv (2017) 127613; doi: https://doi.org/10.1101/127613

  55. Adaptive optical versus spherical aberration corrections for in vivo brain imaging.
    Turcotte R, Liang Y, Ji N
    Biomedical Optics Express (2017) 8, 3891-3902. doi: 10.1364/BOE.8.003891

  56. Near-infrared fluorescent protein iRFP713 as a reporter protein for optogenetic vectors, a transgenic Cre-reporter rat, and other neuronal studies.
    Richie CT, Whitaker LR, Whitaker KW, Necarsulmer J, Baldwin HA, Zhang Y, Fortuno L, Hinkle JJ, Koivula P, Henderson MJ, Sun W, Wang K, Smith JC, Pickel J, Ji N, Hope BT, Harvey BK
    Journal of Neuroscience Methods (2017) 284, 1-14. doi: 10.1016/j.jneumeth.2017.03.020

  57. Adaptive optical fluorescence microscopy.
    Ji N
    Nature Methods (2017) 14, 374-380. doi:10.1038/nmeth.4218

  58. Video-rate volumetric functional imaging of the brain at synaptic resolution.
    Lu R, Sun W, Liang Y, Kerlin A, Bierfeld J, Seelig J, Wilson DE, Scholl B, Mohar B, Tanimoto M, Koyama M, Fitzpatrick D, Orger MB, Ji N
    Nature Neuroscience (2017) 20, 620-628. doi:10.1038/nn.4516

    Also see: bioRxiv (2016) 058495 https://doi.org/10.1101/058495

    2016

  59. Opportunities for Technology and Tool Development.
    Neuron (2016) 92, 564-566. (Voices) doi: 10.1016/j.neuron.2016.10.042

  60. Technologies for imaging neural activity in large volumes.
    Ji N, Freeman J, Smith SL
    Nature Neuroscience (2016) 19, 1154-64. doi: 10.1038/nn.4358

  61. Thalamus provides layer 4 of primary visual cortex with orientation- and direction-tuned inputs.
    Sun W, Tan Z, Mensh BD, Ji N
    Nature Neuroscience (2016) 19, 308–315. doi: 10.1038/nn.4196

    2015 and prior

  62. Minimally invasive microendoscopy system for in vivo functional imaging of deep nuclei in the mouse brain.
    Bocarsly ME, Jiang W, Wang C, Dudman JT, Ji N, Aponte Y
    Biomedical Optics Express (2015) 6, 4546-56. doi: 10.1364/BOE.6.004546

  63. Neuronal Representation of Ultraviolet Visual Stimuli in Mouse Primary Visual Cortex.
    Tan Z, Sun W, Chen T, Kim D, Ji N
    Scientific Reports (2015) 5, 12597. doi: 10.1038/srep12597

  64. Direct wavefront sensing for high-resolution in vivo imaging in scattering tissue.
    Wang K, Sun W, Richie CT, Harvey BK, Betzig E, Ji N
    Nature Communications (2015) 6, 7276. doi: 10.1038/ncomms8276

  65. Label-free spectroscopic detection of membrane potential using stimulated Raman scattering.
    Liu B, Lee HJ, Zhang D, Liao C, Ji N, Xia Y, Cheng J
    Applied Physics Letters (2015) 106, 173704. doi: 10.1063/1.4919104

  66. The Practical and Fundamental Limits of Optical Imaging in Mammalian Brains.
    Ji N
    Neuron (2014) 83, 1242-1245. doi: 10.1016/j.neuron.2014.08.009

  67. Multiplexed aberration measurement for deep tissue imaging in vivo.
    Wang C, Liu R, Milkie DE, Sun W, Tan Z, Kerlin A, Chen T, Kim DS, Ji N
    Nature Methods (2014) 11, 1037–1040. doi: 10.1038/nmeth.3068

  68. Direct phase measurement in zonal wavefront reconstruction using multidither coherent optical adaptive technique.
    Liu R, Milkie DE, Kerlin A, Maclennan B, Ji N
    Optics Express (2014) 22, 1619-1628. doi: 10.1364/OE.22.001619

  69. Characterization and improvement of three-dimensional imaging performance of GRIN-lens-based two-photon fluorescence endomicroscopes with adaptive optics.
    Wang C, Ji N
    Optics Express (2013) 21, 27142-54. doi: 10.1364/OE.21.027142

  70. Pupil-segmentation-based adaptive optical correction of a high-numerical-aperture gradient refractive index lens for two-photon fluorescence endoscopy.
    Wang C, Ji N
    Optics Letters (2012) 37, 2001-3. doi: 10.1364/OL.37.002001

  71. Characterization and adaptive optical correction of aberrations during in vivo imaging in the mouse cortex.
    Ji N, Sato TR, Betzig E
    Proceedings of the National Academy of Sciences of the United States of America (2012) 109, 22-7. doi: 10.1073/pnas.1109202108

  72. Pupil-segmentation-based adaptive optical microscopy with full-pupil illumination.
    Milkie DE, Betzig E, Ji N
    Optics Letters (2011) 36, 4206-8. doi: 10.1364/OL.36.004206

  73. Adaptive optics via pupil segmentation for high-resolution imaging in biological tissues.
    Ji N, Milkie DE, Betzig E
    Nature Methods (2010) 7, 141-7. doi: 10.1038/nmeth.1411

  74. Advances in the speed and resolution of light microscopy.
    Ji N, Shroff H, Zhong H, Betzig E
    Current Opinion in Neurobiology (2008) 18, 605-16. doi: 10.1016/j.conb.2009.03.009

  75. High-speed, low-photodamage nonlinear imaging using passive pulse splitters.
    Ji N, Magee JC, Betzig E
    Nature Methods (2008) 5, 197-202. doi: 10.1038/nmeth.1175


chemical physics & nonlinear optics

  1. Interfacial Structures of Acidic and Basic Aqueous Solutions.
    Tian C, Ji N, Waychunas GA, Shen YR
    Journal of the American Chemical Society (2008) 130, 13033-13039. https://doi.org/10.1021/ja8021297

  2. Characterization of vibrational resonances of water-vapor interfaces by phase-sensitive sum-frequency spectroscopy.
    Ji N, Ostroverkhov V, Tian CS, Shen YR
    Physical Review Letters (2008) 096102. https://doi.org/10.1103/PhysRevLett.100.096102

  3. Phase-sensitive sum-frequency vibrational spectroscopy and its application to studies of interfacial alkyl chains.
    Ji N, Ostroverkhov V, Chen CY, Shen YR
    Journal of the American Chemical Society (2007) 129, 10056-10057. https://doi.org/10.1021/ja071989t

  4. Atomic and molecular parity nonconservation and sum frequency generation solutions to the Ozma problem.
    Ji N, Harris RA
    Journal of Physical Chemistry B (2006) 110, 18744-18747. https://doi.org/10.1021/jp055038i

  5. Towards chiral sum frequency spectroscopy.
    Ji N, Ostroverkhov V, Belkin MA, Shiu YJ, Shen YR
    Journal of the American Chemical Society (2006) 128, 8845-8848. https://doi.org/10.1021/ja060888c

  6. Three-dimensional chiral imaging by sum frequency generation.
    Ji N, Zhang K, Yang H, Shen YR
    Journal of the American Chemical Society (2006) 128, 3482-3483. https://doi.org/10.1021/ja057775y

  7. A novel spectroscopic probe for molecular chirality.
    Ji N, Shen YR
    Chirality (2006) 18, 146-158. https://doi.org/10.1002/chir.20238

  8. A dynamic coupling model for sum frequency chiral response from liquids composed of molecules with a chiral side chain and an achiral chromophore.
    Ji N, Shen YR
    Journal of the American Chemical Society (2005) 127, 12933-12942. https://doi.org/10.1021/ja052715d

  9. Optically active sum frequency generation from molecules with a chiral center - amino acids as model systems.
    Ji N, Shen YR
    Journal of the American Chemical Society (2004) 126, 15008-15009. https://doi.org/10.1021/ja045708i

  10. Sum frequency vibrational spectroscopy of leucine molecules adsorbed at air-water interface.
    Ji N, Shen YR
    Journal of Chemical Physics (2004) 120, 7107-7112. https://doi.org/10.1063/1.1669375

  11. Surface vibrational spectroscopy on shear-aligned poly(tetrafluoroethylene) films.
    Ji N, Ostroverkhov V, Lagugne-Labarthet F, Shen YR
    Journal of the American Chemical Society (2003) 125, 14218-14219. https://doi.org/10.1021/ja037964l

  12. Sum-frequency vibrational spectroscopic study of surface glass transition of poly(vinyl alcohol).
    Zhang C, Hong SC, Ji N, Wang YP, Wei KH, Shen YR
    Macromolecules (2003) 36, 3303-3306. https://doi.org/10.1021/ma025681s

  13. Intense laser induced eld ionization of C2H2, C2H4, and C2H6.
    Gao L, Ji N, Xiong YJ, Tang XP, Kong F
    Chinese Science Bulletin (2003) 48, 1713. https://ur.art1lib.org/book/11486935/253f54

  14. Sum-frequency spectroscopy of electronic resonances on a chiral surface monolayer of bi-naphthol.
    Han SH, Ji N, Belkin MA, Shen YR
    Physical Review B (2002) 66, 165415. https://doi.org/10.1103/PhysRevB.66.165415

  15. Field ionization of aliphatic ketones by intense femtosecond laser.
    Wu CY, Xiong YJ, Ji N, He Y, Gao Z, Kong F
    Journal of Physical Chemistry A (2001) 105, 374. https://doi.org/10.1021/jp0024165